Cones and gauges in complex spaces: Spectral gaps and complex Perron-Frobenius theory

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

O ct 2 00 6 Cones and gauges in complex spaces : Spectral gaps and complex Perron - Frobenius theory

We introduce complex cones and associated projective gauges, generalizing a real Birkhoff cone and its Hilbert metric to complex vector spaces. We deduce a variety of spectral gap theorems in complex Banach spaces. We prove a dominated complex cone-contraction Theorem and use it to extend the classical Perron-Frobenius Theorem to complex matrices, Jentzsch’s Theorem to complex integral operator...

متن کامل

Perron-frobenius Theory for Complex Matrices

The purpose of this paper is to present a unified Perron-Frobenius Theory for nonnegative, for real not necessarily nonnegative and for general complex matrices. The sign-real spectral radius was introduced for general real matrices. This quantity was shown to share certain properties with the Perron root of nonnegative matrices. In this paper we introduce the sign-complex spectral radius. Agai...

متن کامل

Perron-Frobenius Theorem for Spectral Radius Analysis

The spectral radius of a matrix A is the maximum norm of all eigenvalues of A. In previous work we already formalized that for a complex matrix A, the values in A grow polynomially in n if and only if the spectral radius is at most one. One problem with the above characterization is the determination of all complex eigenvalues. In case A contains only non-negative real values, a simplification ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annals of Mathematics

سال: 2010

ISSN: 0003-486X

DOI: 10.4007/annals.2010.171.1707